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Abstract.20

Background: We previously introduced a machine learning-based Alzheimer’s Disease Designation (MAD) framework for
identifying AD-related metabolic patterns among neurodegenerative subjects.

21
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Objective: We sought to assess the efficiency of our MAD framework for tracing the longitudinal brain metabolic changes
in the prodromal stage of AD.
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Methods: MAD produces subject scores using five different machine-learning algorithms, which include a general linear
model (GLM), two different approaches of scaled subprofile modeling, and two different approaches of a support vector
machine. We used our pre-trained MAD framework, which was trained based on metabolic brain features of 94 patients
with AD and 111 age-matched cognitively healthy (CH) individuals. The MAD framework was applied on longitudinal
independent test sets including 54 CHs, 51 stable mild cognitive impairment (sMCI), and 39 prodromal AD (pAD) patients
at the time of the clinical diagnosis of AD, and two years prior.
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Results: The GLM showed excellent performance with area under curve (AUC) of 0.96 in distinguishing sMCI from pAD
patients at two years prior to the time of the clinical diagnosis of AD while other methods showed moderate performance
(AUC: 0.7–0.8). Significant annual increment of MAD scores were identified using all five algorithms in pAD especially
when it got closer to the time of diagnosis (p < 0.001), but not in sMCI. The increased MAD scores were also significantly
associated with cognitive decline measured by Mini-Mental State Examination in pAD (q < 0.01).

31
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35

Conclusion: These results suggest that MAD may be a relevant tool for monitoring disease progression in the prodromal
stage of AD.

36
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INTRODUCTION31

Alzheimer’s disease (AD) is the most common32

cause of dementia. In 2020, it was estimated that33

58.66 million people suffer from dementia, and this34

number is expected to increase to 152 million by35

2050 [1]. AD can be definitively diagnosed after36

death by testing brain tissue in an autopsy and iden-37

tifying the pathological hallmarks of AD, such as38

amyloid plaques and neurofibrillary tangles [2]. Prob-39

able and possible diagnosis can be made based on40

clinical assessment [3]. However, these clinical indi-41

cators emerge in the later disease stages, and the42

clinical diagnosis of AD is modestly sensitive, but43

remarkably nonspecific under a wide range of evalu-44

ation criteria (sensitivity: 70.9%–87.3%, specificity:45

44.3%–70.8%) when compared to postmortem diag-46

nosis [4].47

The ability to monitor the progression of AD48

in clinical practice has important consequences49

for patient care. Not only would identifying those50

patients with MCI who are at risk of developing51

AD allow for a judicious prescription of disease-52

modifying pharmaceuticals (such as aducanumab53

[5]), but a paradigm of early detection and diag-54

nosis can allow the time required for the effects55

of non-pharmaceutical approaches in delaying the56

onset or severity of symptoms to manifest, such as57

the purposeful maintenance of cognitive reserve or58

social stimulation therapy [6]. A number of neu-59

roimaging studies have shown that the changes60

in levels of amyloid-�42, levels of phosphorylated61

tau, and temporoparietal hypometabolism on 18F-62

fluorodeoxyglucose (18F-FDG) positron emission63

tomography (PET) can be considered as complemen-64

tary AD diagnostic markers [7], which may be able65

to diagnose AD a couple years prior to clinical symp-66

toms.67

18F-FDG is the most widely used radiotracer for68

PET, which can monitor the glucose metabolic activ-69

ity in different regions of the brain in vivo. It has been 70

suggested that 18F-FDG-PET can identify functional 71

changes before anatomical changes occur [8]. The 72

pattern of hypometabolism in the posterior cingulate 73

gyrus, parahippocampal gyrus, posterior parietal cor- 74

tex, middle and inferior temporal gyri regions have 75

been consistently reported in 18F-FDG-PET studies 76

in AD, compared to age-matched cognitively healthy 77

individuals [9, 10]. A systemic review suggested that 78

using 18F-FDG-PET can achieve moderate level of 79

sensitivity (78–98%) and specificity (78–99%) for 80

early detection of AD [11]. 81

Recent development of machine learning tech- 82

niques showed promising potential in aiding 83

18F-FDG-PET readings with improved prediction 84

performance (i.e., classification accuracy: 85% to 85

100%) [12]. Previously, we developed a machine 86

learning-based Alzheimer’s Disease Designation 87

(MAD) algorithm that summarizes the whole-brain 88

metabolic activity into a single value (i.e., MAD 89

score) using different machine-learning algorithms 90

such as a general linear model (GLM), scaled subpro- 91

file modeling (SSM), and a support vector machine 92

(SVM) [13]. MAD reliably classified patients with 93

early-stage AD versus age-matched healthy controls 94

with high sensitivity (84%) and specificity (95%) in 95

10-fold cross-validation. A higher MAD score would 96

imply an AD-related metabolic pattern and advanced 97

cognitive impairment [13]. The MAD score was used 98

as an informative metric for early detection of AD 99

conversion at cross-sectional analysis [13]. However, 100

it has not been tested if MAD can also be used to mon- 101

itor disease progression (e.g., would a non-increasing 102

MAD score in response to anti-AD treatment suggest 103

that disease progression has been deterred?). 104

In this study, we sought to test the reliability of 105

the MAD framework for monitoring AD progression 106

in the prodromal stage (i.e., mild cognitive impair- 107

ment, MCI). MCI is a stage before the mild AD 108

stage, where a patient can maintain most of daily 109
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functions independently while cognitive abnormal-110

ities can be detected with comprehensive clinical111

testing. It is the earliest stage when symptoms may be112

evident. To this end, we applied our pre-trained MAD113

framework, as developed in [13], on a set of longi-114

tudinal 18F-FDG-PET scans that we have identified115

from the Alzheimer’s Disease Neuroimaging Ini-116

tiative (ADNI; https://adni.loni.usc.edu/) database.117

We tested if MAD scores can discriminate MCI118

patients who progress to AD (pAD) versus who119

do not (sMCI). We validated the performance of120

five different prediction models included in MAD121

for monitoring the AD progression. We have also122

assessed if the prospective changes in MAD scores123

are correlated with the changes in cognitive deterio-124

rations in the MCI stage of AD progression.125

MATERIALS AND METHODS126

Machine learning-based Alzheimer’s disease127

Designation (MAD)128

The details about the development of MAD129

have been described elsewhere [13]. Briefly, to130

train the MAD classifiers, we used 111 cogni-131

tively healthy (CH) individuals (mean age ± sd:132

75.3 ± 6.4, age range: 63–94, 55 female, Mini-133

Mental State Examination (MMSE): 29.0 ± 1.1) and134

94 patients with AD (mean age ± sd: 75.5 ± 8.3,135

age range: 56–90, 35 female, MMSE: 24.2 ± 1.8)136

from the ADNI dataset. All 18F-FDG-PET image137

pre-processing was performed using Statisti-138

cal Parametric Mapping (SPM) toolbox version 12139

(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/).140

As described in [13], we used the “old spatial nor-141

malization” routine with the PET template available142

in SPM12. Next, the 18F-FDG-PET images were143

smoothed using an 8-mm full width at half maximum144

Gaussian kernel. Finally, intensity normalization145

was conducted by dividing the PET values by the146

mean of whole-brain activity. The performance of147

the MAD framework was assessed based on the148

GLM, SSM, and SVM classification methods. Two149

different approaches were used in the SSM, where a150

principal component analysis (PCA) is used to derive151

the dominant brain metabolic patterns that explain152

the majority of the metabolic covariance [14].153

SSM/PCA1 uses the single principal component154

(PC) that provides maximum separation between155

two groups. SSM/PCA2 uses a stepwise regression156

to combine relevant PCs to produce the optimal157

spatial metabolic pattern that separates the two158

groups. For the optimization routine in SVM (i.e., 159

the most widely used machine learning technique for 160

neuroimaging-based biomarker development [12]), 161

we employed the iterative single data algorithm 162

(ISDA) and sequential minimal optimization (SMO). 163

All five prediction models exhibited a desirable 164

classification accuracy for distinguishing AD 165

patients and CHs through 10-fold cross-validation 166

(i.e., sensitivity >0.75, specificity >0.75), while 167

the best performance was achieved by SVM-ISDA 168

model (sensitivity = 0.84, specificity = 0.95). Further 169

details related to the MAD framework can be found 170

in [13], and the MAD software is available at: 171

https://www.kolabneuro.com/software1. 172

Subject selection 173

The data used in this study was obtained from 174

the ADNI. The ADNI was launched in 2003 as a 175

public-private partnership, led by Principal Investi- 176

gator Michael W. Weiner, MD. The primary goal 177

of ADNI has been to test whether serial magnetic 178

resonance imaging (MRI), PET, other biological 179

markers, and clinical and neuropsychological assess- 180

ment can be combined to measure the progression of 181

MCI and early AD. The ADNI database comprised 182

over 2600 subjects. For up-to-date information, see 183

https://www.adni-info.org. 184

We queried the ADNI database for CH and MCI 185

with 18F-FDG-PET availability resulting in 261 CH 186

and 461 MCI. Quality assurance of the images was 187

performed (e.g., inclusion of the entire cerebellum). 188

Patients who were diagnosed with AD at baseline 189

were not considered for the purpose of this study. Par- 190

ticipants who were consecutively scanned (2 times for 191

CH and 3 times for MCI) and were not included in 192

the original MAD development [13] were included. 193

MCI patients were divided into prodromal AD (pAD) 194

versus stable MCI (sMCI), depending on the AD 195

diagnosis during the follow-up period. pAD without 196

at least two years of scans prior to the AD diagno- 197

sis were excluded. As a result, we included 54 CH, 198

51 sMCI, and 39 pAD in this study (Supplementary 199

Figure 1). For pAD, Year 0 was defined as the year of 200

AD diagnosis, and thus the prior scans were defined 201

as Year –1 and Year –2. To use the consistent nomen- 202

clature and to simplify the result presentation, the first 203

scan was defined as Year –2 for CH and sMCI as well. 204

The details have been described elsewhere [15]. 205

Demographic information of all participants is 206

presented in Table 1, which include five neuropsychi- 207

atric exam scores: MMSE (a short screening tool for 208

https://adni.loni.usc.edu/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://www.kolabneuro.com/software1
https://www.adni-info.org
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Table 1
Demographic information and clinical follow-up data

CH (N = 54) sMCI (N = 51) pAD (N = 39) p∗ p∗∗

Year 0$ Males/females 30/24 25/26 26/13 0.24 0.09
Age mean (SD) 75.81 (5.87) 74.97 (5.68) 73.84 (7.46) 0.33 0.41

MMSE mean (SD) 28.80 (2.10) 28.12 (2.57) 24.74 (2.89) <0.001 <0.001
CDR (SD) 0.03 (0.11) 0.35 (0.37) 0.57 (0.18) <0.001 <0.001
GDS (SD) 0.63 (1.33) 1.43 (1.23) 2.33 (1.84) <0.001 0.01
FAQ (SD) 0.15 (0.56) 3.69 (5.76) 10.03 (5.45) <0.001 <0.001

NPI-Q (SD) 0.23 (0.33) 2.22 (2.92) 3.56 (3.26) <0.001 0.03
Year –1 MMSE mean (SD) n/a 28.29 (2.10) 26.13 (2.56) <0.001 <0.001

CDR (SD) n/a 0.32 (0.28) 0.55 (0.15) <0.001 <0.001
GDS (SD) n/a 1.43 (1.50) 2.03 (1.75) 0.09 0.09
FAQ (SD) n/a 2.61 (4.32) 6.18 (5.32) <0.001 <0.001

NPI-Q (SD) n/a 2.16 (2.91) 2.54 (2.93) 0.54 0.54
Year –2 MMSE mean (SD) 28.91 (1.37) 28.29 (1.57) 26.87 (1.54) <0.001 <0.001

CDR (SD) 0.02 (0.09) 0.30 (0.25) 0.50 (0.00) <0.001 <0.001
GDS (SD) 0.50 (1.12) 1.18 (1.22) 1.67 (1.36) <0.001 0.07
FAQ (SD) 0.07 (0.33) 2.10 (3.24) 5.32 (4.22) <0.001 <0.001

NPI-Q (SD) 0.30 (0.94) 1.29 (2.34) 2.49 (2.60) <0.001 0.03

CH, cognitively healthy; sMCI, stable mild cognitive impairment; pAD, prodromal Alzheimer’s disease; MMSE, Mini-Mental State Exam-
ination; N, number of subjects; CDR, Clinical Dementia Ratio; FAQ, Functional Assessment Questionnaire; GDS, Geriatric Depression
Scale; NPI-Q, Neuropsychiatric Inventory Questionnaire; n/a, not available, SD, standard deviation. ∗statistical test among three groups.
∗∗statistical test between MCI and pAD. The sex ratio is compared by the chi-square test. $For AD, this is the time that the subjects were
clinically diagnosed with AD.

assessing overall cognitive impairment, score ranges209

from 0 (worst) to 30 (best)) [16], Clinical Dementia210

Rating Scale (CDR; a screening tool for dementia,211

score ranges from 0 (best) to 3 (worst)) [17], Geri-212

atric Depression Scale (GDS; a self-report scale for213

symptoms of depression, score ranges from 0 (best)214

to 15 (worse)) [18], Functional Activities Question-215

naire (FAQ; measuring the complex activities of daily216

living, score ranges from 0 (best) to 20 (worse)) [19],217

and Neuropsychiatric Inventory Questionnaire (NPI-218

Q; psychopathology assessment including delusions,219

anxiety, hallucinations, dysphoria, lability, euphoria,220

disinhibition irritability, apathy, agitation/aggression,221

and aberrant motor behavior factors, score ranges222

from 0 (best) to 36 (worse)) [20].223

Statistical analysis224

MAD scores using five different approaches were225

estimated for all participants as described above.226

MAD scores represents z-scores relative to the mean227

and standard deviation of 111 control subjects that228

were used in MAD classifier training [13]. The area229

under curve (AUC) of receiver-operating character-230

istic (ROC) curve analysis was used to compute the231

performance of MAD and other clinical variables in232

discriminating pAD versus sMCI subjects at base-233

line. Differences in MAD scores between groups (i.e.,234

MCI versus AD) over time were assessed with gen-235

eral linear model with repeated measures (GLM-RM)236

with sex and age at baseline as covariates followed by 237

post-hoc Bonferroni test. As a reference, the longitu- 238

dinal changes of MAD scores in CH was separately 239

analyzed with paired t-test. The associations between 240

longitudinal changes in MAD scores and changes in 241

clinical measurements (MMSE, GDS, NPI, and FAQ) 242

were assessed by a multiple linear regression analy- 243

sis with dummy variables for subjects. Secondarily, 244

to examine whether the association between other 245

clinical variables (GDS, NPI, and FAQ) were mainly 246

driven by cognitive impairment, the multiple lin- 247

ear regression analysis was repeated with including 248

MMSE as a covariate. The p-values were corrected 249

for multiple comparisons using a false discovery rate 250

method, which is denoted by q-values. For all statisti- 251

cal tests, p (or q) <0.05 was considered as significant. 252

All statistical analyses were conducted with the Sta- 253

tistical Package for the Social Sciences (IBM-SPSS 254

Statistics, version 27) and Matlab 2017b (Mathworks, 255

Inc., Natick, MA). 256

RESULTS 257

Discrimination of sMCI from pAD patients at 258

MCI stage (baseline) 259

Although the means were statistically different 260

between the sMCI versus pAD (Table 1), the ROC 261

curve analysis of clinical variables showed rela- 262

tively low AUC for separating the two groups at 263
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Fig. 1. The ROC curves for discrimination of sMCI subjects from those that progress to AD subjects at Year –2. A) clinical variables, B)
MAD scores.

Year –2, ranging from 0.50 to 0.69 (Fig. 1A). The264

imaging-based discriminations (i.e., MAD) generally265

produced higher AUC (>0.7) while the GLM showed266

the best performance of AUC = 0.96. The other meth-267

ods showed moderate performance (AUC: 0.7–0.8)268

(Fig. 1B).269

Longitudinal changes in MAD scores270

To examine whether all five MAD scores were271

affected by the longitudinal changes in brain272

metabolic activity occurring in pAD prior to the AD273

diagnosis, we conducted a 2 × 3 GLM-RM analysis274

(Group: sMCI versus pAD × Time: Year –2, –1, and275

0). Significant interaction effects were observed in all276

five MAD scores (GLM: F (1, 89) = 41.31, p < 0.001;277

SSM/PC1: F (1, 89) = 16.26, p < 0.001; SSM/PC2:278

F (1, 89) = 30.85, p < 0.001; SVM/ISDA: F (1,279

89) = 46.35, p < 0.001; SVM/SMO: F (1, 89) = 42.82,280

p < 0.001), while the SVM/ISDA showed the most281

significant effects. This result is in line with our previ-282

ous study reporting that SVM/ISDA showed the best283

performance in predicting the future development of284

AD from MCI state [13].285

Post-hoc analyses confirmed significant increase286

of MAD scores over time within pAD contrasting287

the year of AD diagnosis versus 1 or 2 years prior, in288

all five different approaches (p < 0.001). In the earlier289

stage (contrasting Year –2 versus –1), four different290

MAD approaches showed significant increase over291

time (p < 0.01) but not for SSM/PCA1 (p = 0.18). On292

the contrary, sMCI patients showed relatively sta-293

tionary MAD scores over time when compared for294

1 year apart (p > 0.08). When compared for 2 years295

apart in sMCI cohort (Year 0 versus Year –2), a 296

small but significant increment was observed in MAD 297

scores when assessed with SSM/PCA2 (p = 0.02), 298

SVM/ISDA (p = 0.04), and SVM/SMO (p = 0.04), but 299

not with GLM (p = 0.14) or SSM/PCA1 (p = 0.17). 300

For details of post-hoc analysis results, see Fig. 2 301

and the Supplementary Material. As expected, CH 302

group also showed relatively stationary MAD scores 303

over 2 years (p > 0.85) except for the GLM-based 304

scores (t(53) = 2.92, p = 0.02, paired-sample t-test) 305

(Fig. 2). 306

Clinical relevance of longitudinal changes in 307

MAD scores 308

We utilized a multiple linear regression analysis to 309

determine whether the changes in MAD scores over 310

time correlated changes in clinical scores in sMCI and 311

pAD groups, respectively. The summary of results is 312

displayed in Fig. 3. 313

In the pAD group, changes in the overall cognitive 314

performance measured by MMSE were signifi- 315

cantly correlated with longitudinal changes in MAD 316

scores in all five algorithms (q < 0.01), i.e., GLM 317

(t(77) = –3.91, q < 0.001), SSM/PCA1 (t(77) = –2.73, 318

q < 0.001), SSM/PCA2 (t(77) = –3.44, q < 0.001), 319

SVM-ISDA (t(77) = –3.17, q < 0.001), and SVM- 320

SMO (t(77) = –2.93, q = 0.009). In the sMCI group, 321

we observed a weaker but significant correlation 322

between changes in MMSE and with changes in 323

SSM/PCA2 scores (t(101) = –2.43, q = 0.029), while 324

other prediction algorithms (i.e., GLM, SSM/PCA1, 325

SVM-ISDA, and SVM-SMO) did not show any sig- 326

nificant correlation (q > 0.10). 327
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Fig. 2. Box plots representing the results of MAD scores on CH, sMCI, and pAD groups at different time points (i.e., Year –2, Year –1, and
Year 0) calculated using different MAD approaches. A) GLM, B) SSM/PCA1, C) SSM/PCA2, D) SVM-ISDA, and E) SVM-SMO. Group
(sMCI versus pAD) × time (Year –2, –1, and 0) comparison was analyzed with GLM-RM with age and sex as covariates, followed by post
hoc Bonferroni test. The effect of time in CH was evaluated using paired t-test. These results show a significant annual increment of MAD
scores prior to dementia diagnosis in pAD by all five prediction models. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

Weaker, yet significant associations were observed328

between changes in depressive symptoms mea-329

sured by GDS and MAD scores estimated by the330

SSM/PCA1 (t(77) = 2.56, q = 0.023) and SSM/PCA2331

(t(77) = 2.72, q = 0.015) in the pAD group. No sig-332

nificant association was observed in sMCI (q > 0.5).333

Similarly, changes in neuropsychiatric symptoms334

measured by NPI were also significantly corre-335

lated with changes in MAD scores estimated by336

SVM-ISDA (t(77) = 2.47, q = 0.028), and SVM-SMO337

(t(77) = 2.57, q = 0.023), but not by other algorithms 338

(q > 0.05). In the sMCI group, we observed a sim- 339

ilar correlation with NPI scores over time with 340

MAD scores estimated by SSM/PCA1 (t(101) = 2.18, 341

q = 0.047) and SSM/PCA2 (t(101) = 2.28, q = 0.040), 342

but not by other prediction algorithms (q > 0.05). Of 343

note, these correlations were abolished when cor- 344

rected for MMSE in both pAD and sMCI (q > 0.18). 345

In pAD, changes in the overall daily activities 346

measured by FAQ were associated with changes in 347



U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

I. Beheshti et al. / Monitoring Alzheimer’s Disease Progression in Mild Cognitive Impairment Stage 7

Fig. 3. Longitudinal association across neuropsychological measures and MAD scores within each group, determined by multiple regression
analysis. A) sMCI group, B) pAD group. MMSE: Mini-mental state examination; GDS: Geriatric Depression Scale; FAQ: Functional
Assessment Questionnaire; NPI-Q: Neuropsychiatric Inventory Questionnaire. ∗q < 0.05, ∗∗q < 0.01, ∗∗∗q < 0.001 corrected for multiple
comparisons using false discovery rate. The color bar stands for t-test values, whereas the numbers inside the cells are beta values obtained
from a multiple linear regression analysis. These results show strong correlations between changes in MAD scores and cognitive performance
in pAD.

MAD scores estimated by all five different algo-348

rithms (GLM, t(77) = 3.52, q = 0.001; SSM/PCA1,349

t(77) = 2.77, q = 0.014; SSM/PCA2, t(77) = 3.69,350

q = 0.001; SVM-ISDA, t(77) = 3.83, q < 0.001; and351

SVM-SMO, t(77) = 3.53, q = 0.001). In the sMCI352

group, a correlation was observed between changes353

in FAQ and MAD scores estimated by SSM/PCA2354

(t(101) = 3.38, q = 0.002), SVM-ISDA (t(101) = 2.32,355

q = 0.003) and SVM-SMO (t(101) = 2.32, q = 0.003),356

but not by GLM or SSM/PCA1 (q > 0.08). These cor-357

relations were abolished, however when corrected for358

MMSE in both pAD and sMCI (q > 0.18).359

DISCUSSION360

As expected, we found that MAD in general shows361

superior AUC than other clinical variables (Fig. 1).362

Most notably, GLM method showed AUC of 0.96.363

However, this result should be interpreted with cau-364

tions because the sample size was further reduced365

from our previous study [13], i.e., we previously366

included all MCI patients with baseline FDG PET367

scans, then stratified them according to their clinical368

follow-up diagnosis, which resulted in higher num-369

ber of subjects (pAD: n = 55; sMCI: n = 186). This370

resulted in moderate sensitivity (0.655) and speci-371

ficity (0.720) [13]. In the present study, however,372

we applied different inclusion criteria for pAD (at 373

least two FDG PET scans prior to AD diagnosis) and 374

sMCI (at least three consecutive FDG PET scans), 375

resulting in much lesser sample size (pAD: n = 39, 376

sMCI: n = 51), which may have introduced an unspe- 377

cific bias, e.g., most sMCI patients showed negative 378

MAD-GLM scores (Fig. 2A). Further work using 379

GLM and 18F-FDG-PET is required to confirm this 380

finding. 381

We have confirmed that the MAD scores increased 382

annually prior to dementia diagnosis in pAD by all 383

five prediction models (Fig. 2). Greater increment 384

was observed when it was closer to the time of diagno- 385

sis (Year –1 versus Year 0), then the prior years (Year 386

–2 versus Year –1). The effect size was the great- 387

est when SVM-ISDA was used, which also showed 388

the greatest group differentiation (AD versus CH) 389

in cross-sectional analysis [13]. In sMCI and CH, 390

no significant increase was observed when assessed 391

annually. When compared for two years apart, there 392

was a significant increase of MAD scores in sMCI 393

with SSM/PCA1, SVM-ISDA, or SVM-SMO, and 394

in CH with GLM. This was in line with our pre- 395

vious study where we showed that age, one of the 396

most significant risk factors for AD development, 397

was correlated with MAD scores in CH and sMCI 398

[13]. Older age has also been associated with other 399

neuroimaging-based markers for AD such as hip- 400
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pocampal volume [21], white matter hyperintensities401

[22], whole-brain structural MRI patterns [23], and402

cortical atrophy patterns [24].403

It is yet unclear whether the abnormal glucose404

metabolic pattern that we see in FDG-PET is specific405

to AD or it merely reflects accelerated aging pro-406

cess in AD. Unlike other tracers that bind to specific407

proteins that characterizes AD such as florobetapir408

[25], florbetaben [26], flutemetamol [27], and flor-409

taucipir [28], the FDG uptake level represents overall410

“health” of the brain regions, the decline of which411

is potentially associated with neuronal loss, mito-412

chondrial dysfunction, loss of synaptic activities, or413

a combination of these [29]. In fact, we have recently414

demonstrated that MAD scores were also elevated in415

some patients with other types of dementia such as416

dementia with Lewy bodies, frontotemporal demen-417

tia, and primary progressive aphasia, suggesting the418

non-specificity of FDG-PET-based markers for AD in419

non-AD dementia [30]. And, it has been previously420

demonstrated that AD patients also show an accel-421

erated pattern of morphological [31] and metabolic422

[32] changes associated with healthy aging itself. In423

addition, cognitive decline due to normal aging has424

been linked to the presence of some pathological425

features (such as lipofuscin, argyrophilic grains, neu-426

romelanin, tau pathology, and corpora amylacea) that427

are related to AD [33].428

Of note for the current study, the yearly increments429

of MAD scores were significantly correlated with430

worsening of cognitive symptoms in pAD that was431

confirmed in all five prediction models (Fig. 3). Other432

clinical variables (depression, psychiatric symptoms,433

and daily activities) were also correlated with MAD434

scores, although it may have been primarily driven435

by cognitive decline, i.e., inclusion of MMSE as436

a covariate abolished the statistical significance.437

Interestingly, changes in MAD score determined by438

SSM/PCA2 was correlated with changes in MMSE439

in sMCI, albeit there was only 0.17 points decrease440

in MMSE over 2 years (compared to 2.13 points441

decrease in pAD).442

GLM showed the best association with clinical443

symptom progression (i.e., MMSE) in pAD (Fig. 3).444

This is not surprising because GLM finds a beta-445

map (a “reference” vector) that maximizes the group446

differences of its dot-products with each subjects’447

vectorized FDG-PET scans. And thus, the most448

“progressed” patients may have greater impact on449

beta-value definition. This is similar in SSM meth-450

ods, except that the patterns are defined to maximize451

the variance-accounted-for in the spatial covariance452

across the whole-brain. On the other hand, SVM- 453

based scores are estimated by the dot-product of 454

residual images of each subject and the orthonor- 455

mal vector to the hyperplane. And SVM’s hyperplane 456

(i.e., the optimal line or decision boundary in the 457

SVM algorithm that separates groups) was trained to 458

maximize the margins between support vectors (i.e., 459

the vectorized FDG-PET scans of subjects whose dis- 460

tance was the closest to the hyperplane). Therefore, 461

the scale of dot-product is not meant to be relevant 462

while the sign of it determines the label of the classi- 463

fier (AD versus NL). Consequently, it is not surprising 464

that the z-scores of SVM-based scores are much more 465

variable than GLM- and SSM-based scores (Fig. 2). 466

It should be noted that MAD topology is not 467

exclusively characterized by hypometabolism, but 468

a large hypermetabolic area including the cerebel- 469

lum, thalamus, and paracentral lobule, also consist 470

of its topology [13]. Using graph theory, we have 471

previously demonstrated that these hypermetabolic 472

regions are the key brain regions with higher between- 473

ness centrality (or hub of information flow) in the 474

GLM-based AD-related brain metabolic network 475

[15]. In pAD, these “hub” regions showed annually 476

increasing FDG uptake prior to the diagnosis of AD 477

while no further decrease of hypometabolism was 478

observed [15]. In the current study, we demonstrated 479

that increasing MAD scores were associated with 480

cognitive decline prior to dementia diagnosis, poten- 481

tially suggesting that the hypermetabolism identified 482

in pAD and AD may also be detrimental (albeit its 483

potential role as a compensatory mechanism cannot 484

be ruled out). 485

Conclusion 486

This study was conducted to validate our MAD 487

framework for longitudinal studies in the prodromal 488

stage of AD. To this end, we applied a MAD frame- 489

work on a set of longitudinal 18F-FDG-PET scans 490

acquired from 54 CHs, 51 sMCI, and 39 pAD sub- 491

jects at the time of the clinical diagnosis of AD, and 492

two years prior. All five MAD scores successfully dif- 493

ferentiated pAD versus sMCI. An annual increment 494

of MAD scores were confirmed through five differ- 495

ent machine-learning algorithms. Changes in MAD 496

scores were also significantly correlated with worsen- 497

ing clinical symptom severity in pAD. These results 498

suggest that MAD may be a relevant tool for moni- 499

toring disease progression in the prodromal stage of 500

AD. 501
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